Systematic Protein-Protein Interaction Analysis Reveals Intersubcomplex Contacts in the Nuclear Pore Complex.

نویسندگان

  • Luise Apelt
  • Kevin E Knockenhauer
  • Nina C Leksa
  • Nouhad Benlasfer
  • Thomas U Schwartz
  • Ulrich Stelzl
چکیده

The nuclear pore complex (NPC) enables transport across the nuclear envelope. It is one of the largest multiprotein assemblies in the cell, built from about 30 proteins called nucleoporins (Nups), organized into distinct subcomplexes. Structure determination of the NPC is a major research goal. The assembled ∼40-112 MDa NPC can be visualized by cryoelectron tomography (cryo-ET), while Nup subcomplexes are studied crystallographically. Docking the crystal structures into the cryo-ET maps is difficult because of limited resolution. Further, intersubcomplex contacts are not well characterized. Here, we systematically investigated direct interactions between Nups. In a comprehensive, structure-based, yeast two-hybrid interaction matrix screen, we mapped protein-protein interactions in yeast and human. Benchmarking against crystallographic and coaffinity purification data from the literature demonstrated the high coverage and accuracy of the data set. Novel intersubcomplex interactions were validated biophysically in microscale thermophoresis experiments and in intact cells through protein fragment complementation. These intersubcomplex interaction data provide direct experimental evidence toward possible structural arrangements of architectural elements within the assembled NPC, or they may point to assembly intermediates. Our data favors an assembly model in which major architectural elements of the NPC, notably the Y-complex, exist in different structural contexts within the scaffold.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Purification of the vertebrate nuclear pore complex by biochemical criteria.

The nuclear pore is a large and complex biological machine, mediating all signal-directed transport between the nucleus and the cytoplasm. The vertebrate pore has a mass of approximately 120 million daltons or 30 times the size of a ribosome. The large size of the pore, coupled to its tight integration in the nuclear lamina, has hampered the isolation of pore complexes from vertebrate sources. ...

متن کامل

The nuclear pore complex: a protein machine bridging the nucleus and cytoplasm.

Compositional analysis of nuclear pore complexes (NPCs) is nearing completion, and efforts are now focused on understanding how these protein machines work. Recent analysis of soluble transport factor interactions with NPC proteins reveals distinct and overlapping pathways for movement between the nucleus and cytoplasm. New fluorescence- and microscopy-based strategies have been used to monitor...

متن کامل

Prediction of structural domains of TAP reveals details of its interaction with p15 and nucleoporins.

Vertebrate TAP is a nuclear mRNA export factor homologous to yeast Mex67p. The middle domain of TAP binds directly to p15, a protein related to the nuclear transport factor 2 (NTF2), whereas its C-terminal domain interacts with various nucleoporins, the components of the nuclear pore complex (NPC). Here, we report that the middle domain of TAP is also similar to NTF2, as well as to regions in R...

متن کامل

Structural and functional analysis of Nup133 domains reveals modular building blocks of the nuclear pore complex

Nucleocytoplasmic transport occurs through nuclear pore complexes (NPCs) whose complex architecture is generated from a set of only approximately 30 proteins, termed nucleoporins. Here, we explore the domain structure of Nup133, a nucleoporin in a conserved NPC subcomplex that is crucial for NPC biogenesis and is believed to form part of the NPC scaffold. We show that human Nup133 contains two ...

متن کامل

Mapping ubiquitin modifications reveals new functions for the yeast nuclear pore complex

Covalent attachment of ubiquitin to target proteins, or ubiquitylation, has emerged as one of the most prevalent posttranslational modifications (PTMs), regulating nearly every cellular pathway. The diversity of functions associated with this particular PTM stems from the myriad ways in which a target protein can be modified by ubiquitin, e.g., monoubiquitin, multi-monoubiquitin, and polyubiqui...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular & cellular proteomics : MCP

دوره 15 8  شماره 

صفحات  -

تاریخ انتشار 2016